Tuesday, July 8, 2014

Kriteria Design Piping Di Area Pump

Pump, atau Pompa, secara umum mempunyai dua nozle utama, yaitu Suction dan Discharge. Dalam proses perencanaan piping system di area pompa ini, ada beberapa hal yang perlu diperhatikan, baik secara general maupun secara lebih khusus tergantung “service fluida” nya.
Secara umum yang perlu diperhatikan, tidak terbatas dengan daftar ini saja, yaitu:

  1. Suction Piping haruslah diusahakan sependek mungkin dengan jumlah fitting yang minimum.
  2. Pipe Support yang pertama pada pipa diusahakan pada pondasi pompa, sehingga mencegah terjadinya perbedaan penurunan permukaan tanah yang umum terjadi. Jadi, diusahakan pondasi pipe support integral dengan pondasi pompa, dengan kata lain support pertama haruslah sedekat mungkin ke nozzle pompa.
  3. Hindari “overhead loops” di piping jika mungkin, jika tak terhindarkan,pasang Vent di High Point.
  4. Untuk pompa dengan nozzle yang berada di samping, maka Suction yang vertical sangat dianjurkan
  5. Jika space tidak mencukupi pemasangan 3 kali diameter pipa requirement, pasang Vertical vane di center of LR 90 Elbow. Hal ini harus di check oleh Mechanical Engineer atau Process Engineer dan juga Vendor
  6. Elbow 90 Deg harus dipasang antara Valve dan pompa, seperti gambar dibawah.
  7. Perlu atau tidaknya Drain Valve sangat tergantung jenis fluida yang mengalir.
  8. Temporary Strainer ditempatkan pada posisi yang lebih disukai, seperti pada gambar dibawah. Alternative, bisa ditempatkan di Valve Downstream Flange dengan strainer mengarah ke Pump atau pada pump nozzle dengan strainer mengarah menjauhi pump. Check ke Process Engineer atau Mechanical Engineer jika ingin memasang Strainer di Nozzle.
  9. Check clearance of strainer projecting terhadap Elbow 90 Deg.
  10. Gunakan Concentric Reducer di Suction yang vertical jika disetujui oleh Process atau Mechanical Engineer. Jika tidak, gunakan exccentric bottom flat reducer.
  11. Jika Valve terletak dekat ke Pump, maka gunakan Flat Type Temporary Strainer yang bisa diselipkan di Flanged joint Downstream end of Valve.
  12. Gambar 1 sampai 5, adalah untuk End or Side Suction Pumps, sedangkan gambar 5 adalah untuk Side Suction Pumps only.
  13. Semua Discharge Line mesti dilengkapi dengan Check Valve. Jika ada kemungkinan terjadinya Hydraulic Shock pada system, maka digunakan Valve type “Non-Slamming Type Check Valve”, dan loading support mesti di check.
  14. Semua Valves disekitar pump mesti mudah di akses untuk “Hand Operation” tanpa menggunakan “Chain or Extend into operational passageways”.
  15. Temporary Strainer type “Bath Tub” mesti dipertimbangkan penggunaanya jika kemungkinan akan sulit untuk di “re-alignment” dengan Nozzle pompa.
  16. Valve di Discharge line mesti dipasang sedekat mungkin dengan Nozzle.
  17. harus disediakan daerah bebas diatas “Caisson PUmp” untuk kemudahan penarikan kabel dan pompa.
  18. Unutk pompa jenis reciprocating, gunakan pipe support type Clamp, jangan type Welded demi menghindari terjadinya “Fatique Fracture” pada support weld. Design mesti sedemikian sehingga pistons dapat dikeluarkan tanpa menggangu system piping





http://pipestress2009.wordpress.com/2008/04/08/kriteria-design-piping-di-area-pump/

API Standard: Pengelompokan Berdasarkan Penggunaan

API Refining Documents yang berhubungan dengan dengan Pressure Equipment:

  1. API 510: Pressure Vessel Inspection Code: Maintenance, Inspection, Rating, Repair and Alteration
  2. API 530: Fired Heater Tubes
  3. API 570: Piping Inspection Code: Inspection, Repair, Alteration, Rerating of In-Service Piping Systems.
  4. API 571: Conditions Casuing Failure
  5. API 572: Inspection of Pressure Vessel.
  6. API 573: Inspection of Fired Boilers and Heaters.
  7. API 574: Inspection of Piping, Tubing, Valves and Fittings.
  8. API 575: Inspection of Atmospheric and Low Pressure Storage Tanks.
  9. API 576: Inspection of Pressure Relieving Devices.
  10. API 577: Welding Inspections.
  11. API 578: Material Verification Program for New and Existing Alloy Piping Systems.
  12. API 579: Fitness-for-Services.
  13. API 581: Base Resource Document-Risk Based Inspection.
  14. API 582: Recommended Practice and Supplementary Welding Guidelines for The Chemical, Oil, and Gas Industries.
  15. API 598: Valve Inspection and Test.
  16. API 610: Centrifugal Pumps for Petroleum, Heavy Duty Chemical and Gas Industry Services.
  17. API 611: General Purpose Steam Turbines for Petroleum, Chemical, and Gas Industry Services.
  18. API 612: Special Purpose Steam Turbines for Petroleum, Chemical, and Gas Industry services.
  19. API 613: Special Purpose Gear Unit for Petroleum, Chemical, and Gas Industry services.
  20. API 617: Centrifugal Compressors for Petroleum and Gas Industry.
  21. API 618: Reciprocating Compressors for Petroleum, Chemical, and Gas Industry Services.
  22. API 619: Rotary-Type Positive Displacement Compressors for Petroleum, Chemical, and Gas Industry.
  23. API 620: Design and Construction of Large, welded, Low Pressure Storage Tank.
  24. API 650: Welded Steel Tank for Oil Storage.
  25. API 651: Cathodic Protection of Above Ground Storage Tanks.
  26. API 652: Lining of Above Ground Petroleum Storage Tanks.
  27. API 653: Tank Inspection, Repair, Alteration, and Reconstruction Code.
  28. API 674: Positive Displacement Pump – Reciprocating.
  29. API 675: Positive Displacement Pump – Controllod Volume.
  30. API 676: Positive Displacement Pump – Rotary.
  31. API 686: Machinery Installation and Installation Design.
  32. API 751: HF Acid
  33. API 850: API Standards 620, 650 and 653 Interpretations.
  34. API 920: Preventions of Brittle Fracture of Pressure Vessels.
  35. API 937: Evaluating Design Criteria for Storage Tanks with Frangible Roof Joints.
  36. API 941: Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrocehmical Plants.
  37. API 945: Avoiding Environtmental Cracking in Amine Units.
  38. API 1107: Pipe Line Maintenance Welding.
  39. API 2510: Design and Instruction of LPG Installation.
API Valve Publication:

  1. API 589: Fire Test for Evaluation of Valve Stem Packing.
  2. API 591: User Acceptance of Refinery Valves.
  3. API 594: Wafer Check Valves
  4. API 595: Cast Iron Gate Valves
  5. API 598: Valve Inspection and Testing
  6. API 599: Metal Plug Valves-Flanges and Welding Ends
  7. API 600: Steel Gate Valves, Flanges and Butt Welding Ends
  8. API 602: Compact Steel Gate Valves
  9. API 603: Class 150 Cast Corrosion Resistant Flanged End Gate Valves
  10. API 604: Ductile Iron Gate Valves, Flanged Ends
  11. API 606: Compact Steel Gate Valve, Extended Body
  12. API 607: Fire Test for Soft Seat Quarter Turn Valves
  13. API 608: Metal Valves, Flanged and Butt Welding Ends
  14. API 609: Butterfly Valves Lug Type and Wafer Type
API Pipeline Transportation Publications::

  1. API 5L: Specification for Line Pipe
  2. API 5L1: Railroad Transportation of Line Pipe
  3. API 6D: Specification of Pipeline Valves
  4. API 10E: Application of Cement Lining to Steel Tubular Goods, handling, Installation, and Joining.
  5. API 15HR: Specification for High Pressure Fiberglass Line Pipe.
  6. API 15LE: Specification for Polyethylene Line Pipe.
  7. API 15LP: Specification for Thermoplastic Line Pipe.
  8. API 15LR: Specification for Low Pressure Fiberglass Line Pipe.
  9. API 15L4: Recommended Practice Care and Use of Reinforced Thermosetting Resin Line Pipe.
  10. API 1102: Steel Pipelines Crossing Railroads and Highways.
  11. API 1104: Welding of Pipelines and Related Facilities.
  12. API 1109: Marking Liquid Petroleum Pipeline Facilities.
  13. API 1110: Pressure Testing of Liquid Petroleum Pipelines.
  14. API 1111: Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipeline and Riser.
  15. API 1113: Developing of Pipeline Supervisory Control Center.
  16. API 1114: Design of Soluditon-Minded Undergound Storage Facilities.
  17. API 1115: Operation of Solution-Minded Underground Facilities.
  18. API 1117: Movement of In-Servie Pipelines.
  19. API 1123: development of Public Awareness Program by Hazardoud Liquid Pipeline Operators.
  20. API 1130: Computational Pipeline Monitoring.
  21. API 1132: Effects of Oxygenated Fuels and Reformulated Diesel Fuels on Elastomer and Polymers in Pipeline/Terminal Component.
  22. API 1149: Pipeline Variable Uncertainties and Their Effect on Leak Detectability.
  23. API 1155: Evaluation Methodology of Software Based Leak Detection Systems.
  24. API 1156: Effects of Smooth and Rock Dents on Liquid Petroleum Pipelines.
  25. API 1157: Hydrostatic Test Water Treatment and Disposal Operations for Liquid Pipelines Systems.
  26. API 1158: Analysis of DOT Reprotable Incidents for hazardous Liquid Pipelines, 1986 Through 1996.
  27. API 1160: Managing System Integrity for Hazardous Liquid Pipelines.
  28. API 1161: Guidance Documents for The Qualification of Liquid Pipeline Personnel.
  29. API 2200: Repairing Crude Oil, Liquefied Petroleum Gas and Product Pipelines,
API Overpressure Protection Publications:

  1. API 11V7: Repair, testing, and Setting Gas Lift Vlaves.
  2. API 520: Sizing, selection, and Installation of Pressure Relieving Devices in Refineries.
  3. API 521: Guide for Pressure Relieving and Depressurizing System.
  4. API 526: Flanged Steel Safety Relief Valves.
  5. API 527: Seat Tightness of Pressure Relief Valves with Metal-to-Metal Seats.
  6. API 2000: Venting Atmospheric and Low Pressure Storage Tanks. Non-Refrigerated and Refrigerated. 
http://pipestress2009.wordpress.com/2008/02/19/api-standard-pengelompokan-berdasarkan-penggunaan/

API Standard

API atau American Petroleum Institute adalah suatu “Main US trade association ” untuk Industry Oil and Gas yang mewakili sekitar 400 Perusahaan yang tersebar di Production, Refinement and Distribution, serta industry lainnya, kadang juga disebut sebagai AOI atau American Oil Industry.
Sejak tahun 1924, API sudah membuat standard untuk keperluan Industry Minyak dan Gas Alam dunia.
Saat ini API memantain sekitar 550 Standard yang meliputi seluruh aspek didalam Industry Minyak dan Gas Alam. API juga ikut terlibat secara aktif didalam pembuatan dan pengembangan ISO atau International Standard Organization yang juga sesuai untuk digunakan di dunia industry secara umum.
Setiap tahunnya lebih dari 100,000 publications disebar keseluruh penjuru dunia oleh API.
American Petroleum Institute
1220 L Street, NW
Washington DC 20005-4070
USA
http://www.api.org

Beberapa API Standard yang biasa digunakan di dalam dunia kerja Engineering saya lampirkan dibawah beserta sekilas scope dari Standard tersebut.
  1. API 2B: Specification for the Fabrication of Structural Steel Pipe.
    This specification covers the fabrication of structural steel pipe formed from plate steel with Longitudinal and circumferential butt-weld seams, typically in sizes 14in Ouside Diameter (OD) and larger with wall thickness 3/8 in and greater. This pipe is suitable for use in construction of welded Offshore Structures. And primarily intended to be use in Piling and Main Structural members.
  2. API 5L:Specification for Line Pipe:
    This specification is to provide standards for pipe suitables for use in conveying GAS, WATER, and OIL in both OIL and NATURAL GAS Industries. This specification covers seamless and welded steel line pipe. Includes Plain-End, Threaded-End, Belled-end pipe, and Through-the-Flowline (TFL)pipe and pipe with ends prepared for use with special coupling.
  3. API 520: Sizing, Selection and Installation of Pressure-Relieving Devices in Refineries
    Part I – Sizing and Selection.

    This recommended pratice applies to the sizing and selection of pressure Relief devices used in refineries and related industries for equipment that has a MAWP (Maximum Allowable Working Pressure) of 15 psig (103 kPag) or Greater. Intended to protect infired Pressure Vessels and Related Equipment againts overpressure from Operating and Fire Contingencies.
  4. API 520: Sizing, Selection and Installation of Pressure-Relieving Devices in Refineries
    Part II – Installation

    This recommended pratice covers methode of Installation for pressure relief devices used in refineries and related industries for equipment that has a MAWP (Maximum Allowable Working Pressure) of 15 psig (103 kPag) or Greater.
  5. API 526: Flanged Steel Pressure Relief valves
    This standard is a purchase specification for flanged steel pressure relief valves.
    Basic requirements are given for direct spring-loaded pressure relief valves and pilot-operated pressure relief valves as follows:
    a. Orifice Designation and area
    b. Valve size and pressure rating, inlet and outlet
    c. Materials
    d. Pressure-Temperature Limits
    e. Center-to-face dimensions, inlet and outlet
  6. API Standard 530/ISO 13704:2001: Calculation of Heater-Tube Thickness in Petroleum Refineries
    This Internaitonal Standards specifies requirements and gives recommendations for the procedures and design criteria used for
    calculating the required wall thickness of new tubes for petroleum refinery heaters, for both corrosive and non-corrosive applications. Specifically for the design of refinery and related process Fired Heater Tubes (direct-fired, heat-absorbing tubes with enclosures).
  7. API 541: Form-wound Squirrel-Cage Induction Motors-500 HP and Larger
    This standard covers the minimum requirements for form-wound squirrel-cage inductions motors 500 Horsepower (HP) and larger for use in Petroleum Industry Services.
  8. API 560: Fired Heaters for General Refinery Service
    This standard covers the minimum requirements for the design, materials, fabrication, inspection, testing, preparation for shipment, and erection of FIRED HEATERS, AIR PREHEATERS, FANS and BURNERS for General Refinery Service.
  9. API 594: Check Valves: Flanged, Lug, Wafer and Butt-Welding
    This standard covers design, material, face-to-face dimension, pressure-temperature ratings, and examinations, inspection, test requirements for two types of Check valves:
    • TYPE A Check Valves: short face-to-face and can be wafer, lug or double flanges, singale plate or dual plate; gray iron, ductile iron, steel, nickel alloy or other alloy desihned for Installation between Class 125 – 250 Cast Iron Flanges as ASME B16.1, between Class 150 and 300 ductile iron flanges specifies in ASME B16.5, and between Class 150 – 600 steel pipeline flanges as specified in MSS SP-44 or carbon steel flanges as Specified in ASME B16.47
    • TYPE B Check Valves are long face-to-face and can be Flanged or Butt-Welding, steel, nickel allow or other alloy designed for installation between Class 150-2500 Steel Flanges as in ASME B16.5 or for butt-welding into industry accepted piping system
  10. API 598: Valve Inspection and Testing
    This standard covers inspection, examination, supplementary examinations, and pressure test requirements for resilient-seated, non-metallic-seated and metal-to-metal-seated Valves of the Gate, Globa, Plug, Ball, Check, and Butterfly type.
  11. API 602: Steel gate, Globe and Check Valves for Sizes DN 100 and Smaller for the or Petroleum and Natural Gas Industries.
    ISO 15761: 2002: This International Standard Specifies the requirements for a series of compact steel gate, globe and check valves for petroleum and natural gas industry application.
    Applicable to: DN 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, and 100 corresponding to: NPS 1/4, 3/8, 1/2, 3/4, 1, 1 1/4, 1 1/2, 2, 2 1/2, 3 and 4. and to pressure designation of Class 150, 300, 600, 800 and Class 1500. Class 800 is not a listed class designation but is an intermediate class number widely used for socket-welding and threaded end compact valves.
  12. API 607: Testing of Valves – Fire Type-testing Requirement
    or ISO 1-497-5:2004.

    This international standard specifies fire type-testing requirements and a fire type-test methode for confirming the pressure-containing capability of valve under pressure during and after the fire test. It does not cover the testing requirements for valve actuators other than manually operated gear boxxes or similar mechanism when theses form part of the normal valve assembly.
  13. API 609: Butterfly Valves: Double Flanged, Lug and Wafer Type.
    This standard covers design, material, face-to-face dimensions; pressure-temperature ratings and examination, inspection, and test requirements for Gray Iron, Ductile Iron, Bronze, Steel, Nickel base Alloy or special alloy butterfly valves that provide shuttoff in the closed position and are suitable for flow regulation.
  14. API 610: Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries
    equivalent to:
    ISO 13709: 2003: Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries

    This international standard specifies requirements for centrifugal pumps, including pumps running in reverse as hydraulic power recovery turbines for use in petroleum, petrochemical and gas industry process services.
  15. API 611: General Purpose Steam Turbines for Refinery Service
  16. API 612: Petroleum, Petrochemical and natural Gas Industries – Steam Turbines – Special Purpose Applications
    equivalent to:
    ISO Final Draft International Standard 10437:

    This standard specifies requirements and gives recommendations for the design, materials, fabrication, inspection, testing and preparation for shipment for Steam Turbines in special purposes services. It also covers the related lube-oil systems, instrumentation, control systems and auxiliary equipment. It is not applicable to General Purpose Steam Turbines which are covered in API Std. 611.
  17. API 613: Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services
    This standard covers the menimum requirements for specifial-purpose, enclosed, precission single and double-helical one and two-stage speed increasers and reducers of parallel-shaft design for petroleum, chemical and gas Industry services.
  18. API 614: Lubrication, Shaft-Sealing, and Control-Oil Systems and Auxiliaries for Petroleum, Chemical and Gas Industry Services.
    This international standard covers the minimum requirements for lubrication systems, oil-type shaft-sealing systems, dry gas face-type shatf-sealing systems, and control-oil systems for general purposes applications. General purpose applications are limited to lubrication systems.
  19. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services .
    This standard covers the minimum requirements for open, simple, and regenerative-cycle combustion gas turbines units for services of mechanical drive, generator drive, or process gas generation.
  20. API 617: Centrifugal Compressors for Petroleum, Chemical, and Gas Service Industries.
  21. This standard covers the minimum requirements for centrifugal compressors used in petroleum, chemical, and gas industries that handle air or gas. This standard does not apply to fans or blowers that develop less than 34 kPa or 5 Psi) pressure rise above atmospheric pressure; these are covered by API Standard 673.
  22. API 620: Design and Construction of Large, Welded, Low-Pressure Storage Tank
  23. API 650: Welded Steel Tanks for Oil Storage.
    This standard covers material, design, fabrication, erection, and tetsing requirements for vertical, cylindrical, aboveground, closed and open top, welded steel storage tank in various size and capacities for internal pressures approximating atmospheric pressure (internal pressure not exceedng the weight of the roof plates), but a higher internal pressure is permitted when additional requirements are met (see 1.1.10 of API 650). This standard applies only to tanks whose entire bottom is uniformly supported and to tanks in nonrefrigerated service that have a maximum design temperature of 93 C (200 F) or less.
  24. API 661: Air-Cooled Heat Exchangers for General Refinery Service.
    ISO 13706: 2000: Petroleum and Natural Gas Industries – Air Cooled Heat Exchangers.
    This International Standard gives requirements and recommendations for the designs, materials, fabrication, inspection, testing and preparation for shipment of air-cooled heat exchangers for use in the petroleum and natural gas industries.
  25. API 662: Plate Heat Exchangers for General Refinery Services.
    Part 1- Plate-and-Frame Heat Exchangers.
    ISO 15547-1:2006: (Identical)Petroleum, petrochemical and natural gas industries-Plate-type Heat Exchangers-Part 1: Plate-and-Frame Heat Exchangers.
    This Part of ISO 15547 gives requirements and recommendations for the mechanical designs, materials, fabrication, inspection, testing and preparation for shipment of plate-and-frame heat exchangers for use in petroleum, petrochemical and natural gas industries. It is applicbale to gasketed, semi-welded and welded plate-and-frame heat exchangers.
  26. API 670: Machinery Protection Systems.
    This standard covers the minimum requirements for a machinery protection systems measuring radial shaft vibrations, casing vibration, shaft axial position shaft rotational speed, piston rod drop, phase reference, overspeed, and critical machinery temperatures (such as bearing metal and motor windings). It covers requirements for hardware (transducer and monitor systems), installation, documentation and testing.
  27. API 682: Pumps-Shaft Sealing Systems for Centrifugal and Rotary Pumps.
    ISO 21049: 2004 (identical): Pumps-Shaft Sealing Systems for Centrifugal and Rotary Pumps.
    This international standard specifies requirements fand gives recommendation for sealing systems for centrifugal and rotary pumps used in the petroleum, natural gas and chemical industries.
    It is applicable mainly for hazardeous, flammable and/or toxic services where a greater of reliability is requiredfor the improvement of equipment availability and the reduction of both emissions to atmosphere and life cycle sealing cost.
    It covers seal pump shaft diameters from 20mm (0.75 in) to 110 mm (4.3 in).
  28. API 1104: Welding of Pipelines and Related Facilities
    This standard covers the gas and arc welding of butt, fillet, and socket welds in carbon and low-alloy steel piping used in the compression, pumping and transmission of crude petroleum, petroleum products, fuel gases, carbon dioxida, nitorgen and, where aplicable, covers welding on distribution system.
  29. API 2218: Fireproofing Practices in Petroleum and Petrochemical Processing Plants.
    This publication is intended to provide guidance for selection, applying, and maintaining fireproofing systems that are designed to limit the extent of fire related property loss in the petroleum and petrochemical industries.
  30. API 2510: Design and Construction of LPG Installation.
    This standard covers the design, construction and location of liquefied petroleum gas (LPG) installation at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants or tank farms. This standard covers storage vessels, loading and unloading systems, piping or related equipment.
  31. API 2510 A: Fire-Protection Consideration for the Design and Operation of Liquefied Petroleum Gas (LPG) Storage Facilities.
    This publication addresses the design, operation, and maintenance of LPG Storage facilities, from the standpoints of prevention and control of releases, fire protection design, and fire-control measures. In case of conflict, the API Standard 2510 shall prevail.
  32. API RP 2A-WSD : Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design.
    This publication serves as a guide for those who are concerned with the design and construction of new platforms and for the relocation of existing platforms used for the drilling, development, storage of hydrocarbon in offshore area. In addition, guidelines are provided for the assessment of existing platforms in the event that it become necessary to make a determination of the “fitness for purposes” of the structure.
  33. API RP – 14G: Recommended Practice for Fire Prevention and Control of Fixed Open-Type Offshore Production Platforms
    This publication presents recommendations for minimizing the likelihood of having an accidental fire, and for designing, inspecting, and maintaining fire control systems. It emphasizes the need to train personnel in fire fighting, to conduct routine drills, and to establish methodes and procedures for safe evacuations.
  34. API RP – 14J: Recommended Practice for Design and Hazard Analysis for Offshore Production Facilities
    This document recommends minimum requirements and guidelines for the design and layout of production facilities on open-type offshore platforms, and it is intended to bring together in one place a brief description of basic hazard analysis procedure for offshore production facilities.
  35. API RP – 521: Guide for Pressure-Relieving and Deprusuring Systems.
    This recommended practice is applicable to pressure-relieving and vapor depressuring systems.
    This recommended practice is intended to supplement the practices set forth in API Recommended Practice 520 Part-1, for establishing a basis of design.
  36. API RP-577: Welding Inspection and Metallurgy
    This recommended practices provides guidance to the API authorized inspector on welding inspection as encountered with fabrication and repair of refinery and chemical plant equipment and piping.

http://pipestress2009.wordpress.com/2008/02/15/api-standard-summary/




Pemilihan Pompa Sentrifugal

Pada saat pemilihan pompa centrifugal, ada beberapa hal yang sangat penting harus kita perhatikan, antara lain :
1. KAPASITAS
Dinyatakan dalam satuan isi per waktu. Misalnya : m3/jam, m3/detik, liter/detik, USGPM dan sebagainya. Yang dimaksudkan dengan kapasitas pada suatu pompa adalah kemampuan pompa tersebut untuk mengalirkan/memindahkan sejumlah cairan/fluida dalam satuan kapasitas.
Kebocoran cairan/fluida pada packing perapat porors atau air balik tidak diperhitungkan sebagai kapasitas pompa.
2. TOTAL HEAD / TEKANAN
Total head di nyatakan dalam satuan jarak. Misalnya : meter, feet dan laian-lain. Tekanan dinyatakan dalam satuan tekanan. Misalnya : kg/cm2, bar, dan lain-lain.
Total head dan tekanan ini sangat penting dan saling berhubungan satu dengan lainnya untuk pemilihan pompa dan dapat dijelaskan sebagai berikut :
Head dari sebuah pompa adalah energi mekanik yang dipakai dan diteruskan ke media yang di tangani, yang berhubungan dengan berat media, dinyatakan dalam satuan panjang. Head ini tidak tergantung dari berat jenis media, dengan kata lain sebuah pompa pompa sentrifugal dapat menimbulkan head yang sama untuk jenis cairan. Tetapi berat jenis media akan menyebabkan tekanan pada pompa tersebut.
Total head dari suatu sistim (Ha) dapat dijelaskan sebagai berikut (lihat gambar 1 dan gambar 2) :

Hgeo : Head statis
Head statis adalah perbedaan tinggi permukaan cairan pada bagian hisap dengan bagian tekan. Jika pipa tekan berada diatas permukaan cairan maka Hgeo di ukur dari garis tengah pipa tersebut.

Hsgeo : Head hisap statis
Head hisap statis adalah perbedaan tinggi permukaan cairan pada bagian hisap denga garis sumbu poros pompa.

Hzgeo : Head tekan statis
Head tekan statis adalah perbedaan tinggi permukaan cairan pada bagian hisap dengan garis sumbu poros pompa.

Pa : Tekanan pada tangki tertutup pada bagian tekan

Pe : Tekanan pada tangki tertutup pada bagian hisap Va : Kecepatan aliran pada tangki tekan

Ve : Kecepatan aliran pada tangki hisap

EHv : Jumlah semua kerugian tekanan head pada sistim (gesekan pipa, gesekan katup, fitting danlain-lain pada bagian hisap dan bagia tekan).

p : Berat jenis

g : Konstanta grafitasi = 9.81 meter/detik2.

Demikian sistim head (ha) =

Dalam prakteknya perbedaan kecepatan pada tangki bagian hisap dantangki bagian tekan diabaikan sehingga untuk sistim tangki tertutup menjadi =

Dan untuk tangki terbuka menjadi =

3. JENIS DAN DATA-DATA CAIRAN
Jenis dan data cairan sangatlah perlu dalam menentukan pemilihan pompa. Hal ini karena setiap cairan mempunyai berat jenis yang berbeda-beda yang akan berhubungan langsung dengan kebutuhan daya dari penggerak mula. Selain hal tersebut diatas, kit ajuga harus menentukan material dari pompa yang sesuai dengan cairan yang dipompakan terutama untuk cairan yang bersifat korosi. Cairan yang di pompakan juga mempunyai viscositas yang berbeda-beda yang akan mempengaruhi kurva pompa. Makin tinggi viscositas suatu cairan (cairan yang kental/viscous liquid? makan akan mengakibatkan :
  1. Kapasitas pompa menurun
  2. Total head pompa menurun
  3. Effesiensi pompa menurun
  4. Daya yang dibutuhkan naik

4. PENGGERAK MULA
Pada dasarnya pompa memerlukan penggerak mula untuk menggerkannya / mengoperasikan. Dalam pemilihan penggerak mula dari pompa tersebut maka keadaan setempat dan tersedianya sumber energi sangat mempengaruhi, dengan kata lain jika suatu daerah tidak terdapat sumber listrik dan tidak memungkinkan untuk diadakan sumber listriknya maka tidaklah mungkin kita memilih motor listrik sebagai penggerak mulanya. Sebagai contoh ditengah perkebunan yang luas maka kita dapat memilih motor diesel sebagai penggerak mulanya.


a. Motor Listrik


b. Motor Diesel
Kecepatan putaran yang sering dipakai adalah berkisar antara : 580 - 3500 rpm.
c. Turbine
Kecepatan putaran yang sering dipakai adalah berkisar antara : 1750 - 8000 rpm.
Perubahan kecepatan putaran pada penggerak mula akan mempengaruhi garis kurva pompa. Jika nilai kapasitas (Q1), total head (H1) dan daya (P1) telah diketahui apda kecepatan putaran (n1), maka nilai baru untuk putaran = n2 adalah sebagai berikut :

Daya yang harus tersedia oleh penggerak mula harus mencukupi/lebih besar dari daya yang di butuhkan oleh pompa. Daya yang di butuhkan oleh pompa sebagai berikut :



5. PEMASANGAN POMPA
Yang di maksud dengan pemasangan pompa mencakup :
  1. Pemasangan pompa secara horizontal/vertical/inclined
  2. Pemasangan pompa secara kering/basah
  3. Pemasangan pompa secara pararel/seri

Tetapi dalam tulisan berikut ini hanya akan membahas mengenai pemasangan pompa secara pararel dan seri saja beserta dengan akibatnya.

a. Pemasangan pompa secara pararel
Pemasangan pararel sering dilakukan karena meninjau beberapa faktor yang sangat penting antara lain penghematan energi pada penggerak mula, dan lainnya sehingga tercapai pengoperasian yang optimum. Pada umumnya pada pemasangan pompa secara pararel dipergunakan dua atau lebih pompa yang type, jenis ukuran dan data teknis yang sama. Contoh yang sering di temukan adalah : Pemasangan pompa pararel dengan kapasitas paruh, dan penambahan satu unit pompa untuk menambah kapasitas karena peningkatan kebutuhan akan cairan.

Pemasangan pompa pararel dengan kapasitas paruh (pararel dengan dua unit pompa).
Dari perencanaan kita sudah menghitung dan mendapatkan kurva dari sistim (garis sifat pipa).

Dari gambar di atas maka yang perlu diperhatikan dalam menentukan unit pompa adalah sebagai berikut :

1. Pada saat hanya satu unit pompa yang bekerja maka titik kerja pompa akan berubah kapasitasnya akan meningkat dan headnya akan menurun tidak sama dengan pada saat dua unit pompa bekerja. Oleh sebab itu kita harus menentukan pompa yang dapat di rekomendasikan dan di jamin oleh pabrik pompa untuk bekerja pada titik -titik kerja sesuai dengan sistim kurva dan kurva pompa.

2. Untuk penggunaan pompa yang mempunyai sifat kurva curam maka kapasitas yang akan di capai untuk dua unit pompa beroperasi secara pararel lebij besar dari pada pompa yang mempunyai sistim kura landai.

3. Untuk menentukan besar daya penggerak mula maka dasar perhitungan daya yang akan di butuhkan oleh pompa adalah pada daya maksimumnya.
Penambahan satu unit pompa pada sistim karena adanya peningkatan kebutuhan tanpa diadakan perubahan pada instalansi pipa.


Dari gambar diatas yang perlu kita perhatikan adalah sebagai berikut :

1. Bahwa dengan penambahan satu unit pompa yang sejenis dan mempunyai data teknis yang sama maka hasil operasi pararel dari dua unit pompa tersebut tidak akan mencapai dua kali kapasitas yang di capai oleh satu unit pompa beroperasi terutama untuk pompa yang mempunyai sistim kurva landai. Biasanya untuk pompa yang mempunyai sistim kurva landai tidak di rekomendasikan untuk beroperasi pararel. 2. Untuk menambah satu unit pompa yang mempunyai data teknis yang berbeda kita harus memperhatikan kembali kurva sistim, jangan sampai pompa yang telah terpasang tidak dapat berfungsi dengan optimum. Lihat gambar di bawah ini.

b. Pemasangan pompa secara seri

dalam operasi pompa secara seri, pompa 1 dan pompa 2 akan menghasilkan head H1+2 dengan penjumlahan headnya. Pompa dengan dipasang seri banyak keuntungannya terutama untuk kurva sistim yang curam dan sistim kurva pompa yang landai. Pda waktu menjalankan pompa pertama harus dijalankan lebih dahulu sampai mencapai tekanan dan tekanan yang cukup, kalau tidak terjadi masalah pada kavitasi. Sebaliknya pada waktu mematikan pompa, urutan sebaliknya yang harus di lakukan.
Sesungguhnya lebih baik dipakai pompa dengan impeller jamak jika masih memungkinkan karena akan lebih murah dan lebih efesien serta baik secara teknisnya.

Sumber : dari berbagai sumber makalah dan karya tulis univ dan smk, PT SANDAI INDAH JAYA